Perspectives and Debates

Teaching about climate change in medical education: an opportunity

Janie Maxwell, Grant Blashki
The Nossal Institute for Global Health, The University of Melbourne, Australia

Climate change and health

Climate change endangers human health through destabilising the ecological and social systems that provide core human needs.3 In the context of the Anthropocene, a time when humans are the dominant influence on the planet,15 Steffen et al. describe nine planetary boundaries which define a safe operating space for humanity.16 Importantly, these boundaries do not define tipping points in the planetary system, but mark a zone of increasing uncertainty around risk. Climate change is one domain which has transgressed the planetary boundary into increasing risk and uncertainty. Like alterations to the biosphere, climate change is of particular concern as it risks a sudden major change in the earth’s environment which could be catastrophic.16,17

Climate change affects health in a myriad of ways.1,5,18 Risks can be categorised as immediate and direct risks, indirect risks, deferred and diffuse risks, and risks associated with conflict and refugee flows.3 Immediate and direct risks include heatwaves, extreme weather events and altered air quality.3 The increasing intensity and frequency of extremes have the potential to overwhelm adaptive capacity and cause considerable premature mortality, as was evident in the 2010 Pakistani flood and 2003 European heatwave. Indirect risks to health occur through changes to ecosystems and biophysical systems, affecting infectious disease distribution, crop yields, fish stocks, aeroallergens, water quality and flows, and bacterial growth rates.3 Ultimately, climatic shifts cause stress and disrupt livelihoods, leading to deferred and diffuse risks to mental and physical health. For mental health: extreme events can cause stress and trauma; and existential concerns about humanity and the planet can cause anxiety and depression.19 Climate change poses further risks to health through increases in civil conflict and social instability and forced migration,20,22 potentially dwarfing existing refugee crises.

Health impacts can be considered climate-sensitive or climate-induced. Climate-sensitive illnesses encompass exacerbations in respiratory, cardiovascular and renal disease, which may be triggered by heat waves or air pollution. Climate-induced illnesses encompass infectious disease, malnutrition, heat stroke, and mental illness.

Climate change and health inequity are inextricable. As a risk-amplifier, climate change exacerbates existing inequities and vulnerabilities.11,23-25 Populations with a low adaptice capacity are frequently more climate-sensitive, for example, low and middle income countries have larger subsistence farming populations whose livelihoods are more vulnerable to environmental changes. These regions are predict- ed to experience greater exposure to climate change despite comparatively small historical greenhouse emissions.26 Climate change represents a classic global health issue; it is characterised by inequity in exposure, contribution, vulnerability and capacity to respond.

To achieve health equity, and indeed broader societal equity, climate change, and ecological sustainability, must be core focuses. Conversely, to legitimately achieve and maintain a safe operating space for humanity that avoids catastrophic climate change requires resolution of global inequities.18 Sustainability can be considered a primary criterion for health equity; and health equity a primary criterion for
sustainability, an approach reflected in the Sustainable Development Goals. To ameliorate these climate health risks, the health sector has a crucial role in highlighting the interconnectedness of sustainability and health, and advocating for policies that reflect this foundation.

Beyond advocating for a broader eco-health lens, the health sector has diverse roles in mitigation and adaption. Comprehensive health sector adaptation plans need to be inter-sectoral and transdisciplinary. Synergies between health challenges and climate challenges need to be sought. For instance, food systems can be developed that address the triple burden of malnutrition, and promote sustainability and climate change mitigation. Health adaptation needs to encompass: epidemiological surveillance and planning of regional and global climate risks; governance and institutional planning; community health promotion and emergency preparedness; workforce development and education; and strategic finance and investment.

Improved health service sustainability has a strong public health rationale, reinforced by environmental and economic necessities. Health services require vast resources and have significant greenhouse emissions. They can be considered carbon-exposed. This means that in a carbon-constrained society committed to lower greenhouse emissions scenarios, health services may encounter escalating financial, feasibility and ethical concerns. Finally, unmitigated climate change is associated with high economic cost which endangers the viability of current health service models. Health services are increasingly recognising these constraints; for example, the UK health sector, which contributes 25% of public sector greenhouse emissions, has committed to a reduction of at least 34% in greenhouse emissions by 2020.

Many mitigation strategies have independent positive impacts on health, the environment and society beyond mitigation of climate-related risk; these are termed co-benefits. Through this lens, the overall cost of mitigation strategies is reduced and some strategies have a net economic benefit. Reductions in outdoor air pollution from fossil fuel use in transport and electricity production can achieve dramatic reductions in respiratory disease and premature deaths, largely due to reductions in sulphur dioxide, nitrous oxide and particulate matter. Likewise, non-fossil-fuel-based cooking stoves in low-income countries can reduce morbidity associated with indoor air pollution. Active transport and public transport can reduce traffic accidents, rates of obesity, diabetes, cancer and cardiovascular disease. Nutritionally appropriate reduction in meat consumption can reduce cardiovascular disease and some cancers.

The links between climate change and health present a compelling argument for medical education to prepare doctors for health sector mitigation and adaptation to climate change. However, it is not possible to prescribe a single climate change curriculum that will have international applicability. Climate change health impacts will be influenced by pre-existing health status and social conditions, as well as exposure, adaptive capacity and sensitivity to climate change. An added complexity is the uncertainty around regionally specific and disease specific climate change risks. Although some risks exhibit clear international trends, such as an increase in frequency and intensity of heatwaves, other risks, such as the distribution of infectious disease, are less predictable. A climate change curriculum therefore needs to evolve with emerging evidence and local needs. Yet there are certain concepts and skills that could be considered core learning objectives.

Climate change curriculum

This paper proposes three inter-related reasons for medical students to learn about climate change (Figure 1). First, doctors need to be able to manage climate-related illness, engage in local health promotion and prevention, and provide healthcare in a responsible and sustainable way. Secondly, teaching about climate change offers an avenue to improve public health literacy and eco-health literacy, which are essential to building a climate-resilient society and health-sector. Thirdly, climate change can be used to illustrate and deepen existing learning, and strengthen graduate attributes.

Clinical climate change preparedness

Studies indicate that medical students and doctors are aware of the health effects of climate change but feel unprepared for health sector mitigation and adaptation. Doctors need to be familiar with regional climate health risks to individuals and communities to develop competence in clinical practice. These competencies are explored in detail in Table 1. Broadly, doctors need clinical expertise to identify vulnerable patients, address risk factors, and diagnose and manage climate-related physical and mental illness. Climate change is expected to shift the distribution and intensity of health needs, increasing demand for baseline and emergency services. Increasing pressures may require doctors other than those in public health and emergency disciplines to engage in epidemiology, emergency response and community education.

Regional differences in climate change and communities will create diverse demands on doctors. For example, in Australia, rural practitioners may need to be cognisant of mental illness during drought and engage in health promotion and screening, or contribute to emergency planning for heatwaves, bushfires or floods. Doctors in urban areas may need to promote awareness of the risk of particulate matter, ozone and pollen in respiratory disease, or provide advice during heatwaves to prevent heat-stress or exacerbations of existing illnesses.

Breadth of education: public health and eco-health literacy

Public health literacy has been described as the degree to which individuals and groups can obtain, process, understand, evaluate, and act on information needed to make public health decisions that benefit the community … with three dimensions: conceptual foundations, critical skills, and civic orientation. Bell describes a new literacy, eco-medical literacy, as the ability to access, understand, integrate and use information about the health-related ecological effects of climate change to deliver and improve medical services. This can be further developed using eco-health perspectives. Eco-health approaches recognise the interdependence of human, animal and eco-system health and aim to develop transdisciplinary, systems-focused collaboration to improve health through social stability and ecological sustainability.

This broadest conceptualisation of health, eco-health literacy, encompasses public health literacy and equips medical students with the tools to predict and manage human health in an uncertain ecological and socio-
Calls for improved public health literacy in medical education are prominent and have a long history. This is based on the recognition that systems-focused, preventative, multidisciplinary approaches to health are crucial to address entrenched socio-economic and environmental disadvantage that still play out in health statistics. There has always been a tension between reductionist biomedical and broader public health paradigms. Yet medical education has been through several transformations and there is considerable momentum for a new transition, with approaches such as a three-pillared framework of basic, clinical and systems science, combined medical and public health qualifications.

In many instances, protecting public health and responding to climate change require synergistic skills: public health skills inform the health sector response to climate change and climate change can provide a lens to learn about public health. Developing sustainable, equitable, resilient health services and communities will require expertise across the spectrum of traditional public health domains, with approaches such as a three-pillared framework of health system administration, leadership and management; health policy and advocacy; health promotion and behavioural science; social and environmental determinants of health; epidemiology; ethics and professionalism; and occupational and environmental medicine.

Public health and eco-health literacy are not only essential to address climate change but are also essential to address other health pressures such as burgeoning rates of non-communicable diseases, ageing populations and untenable healthcare costs. Doctors have historically made significant contributions to the public health debates and policy discussions. As the greatest health threat of the 21st century, it could be argued that a strong public health voice has never been more important. To this end, climate change could be a catalyst for greater public health and eco-health literacy.

Depth of education: existing learning and graduate attributes

While a climate change curriculum can broaden medical education to promote public health and eco-health literacy, it can also reinforce and deepen existing learning and promote higher-order learning and graduate attributes. Parallels between climate change and clinical practice, biomedical science and public health include: i) evidence-based practice: critical appraisal of climate change and health research; ii) heat-related illness pathophysiology: examining heat stroke and physiological risk; iii) infectious disease principles: examining climate-related shifts in vector borne disease; iv) statistics and epidemiology: exploring associations between respiratory disease and pollution; v) health as a human right: exploring challenges such as sustainable development and intergenerational equity; and vi) the value of multidisciplinary perspectives: appraising climate risks such as infectious disease and malnutrition from various angles, for example, agricultural and zoonotic studies.

Climate change also represents both a rationale and an opportunity to strengthen efforts to embed graduate attributes in medical education. Graduate attributes underpin the process and outcomes of medical education and are transferable beyond professional practice. Core attributes encompass knowledge, dispositions and skills and include: critical thinking, commitment to sustainability and ethics, and active global citizenship. For example, at the University of Melbourne, students are expected to understand the relationship between environment and health, and commit to sustainable health care and resolution of local and global health inequities. Such attributes are essential to progress on climate change and global health.68,69

Climate change curriculum design

Discipline-specific pedagogical research is a relatively new field of inquiry and there are few models for health-professional curriculum development. This paper builds on the four dimensions of a health curriculum outlined by Lee et al.: big picture context; learning objectives; teaching methods and assessment; and local administrative and institutional context.64

Why? Big picture context

A climate change curriculum is necessary for workforce preparedness and could catalyse a transition in medical education. At the same time it can deepen existing learning and strengthen graduate attributes. This triad of outcomes are essential for future doctors to practice socially accountable and ecologically sustainable medicine.

What? Learning objectives

A challenge for medical educators will be prioritising learning objectives. A broad overview of climate change and health would provide scaffolding for future learning and help define relevant content. Conversely, an exploration of concepts and values is more likely to promote active and global citizenship, and engender appreciation of eco-health and public health lenses. To facilitate curriculum design that incorporates both of these perspectives, potential climate change content areas are described below, separated into factual, conceptual, skills-based and affective knowledge domains.

Factual knowledge: health risks, health co-benefits, health sector sustainability, social and environmental determinants of health, behaviour change, psychology of grief, community emergency response.

Conceptual knowledge: eco-health, equity, vulnerability, sustainability, planetary boundaries, precautionary principle.

Skill-based knowledge: clinical diagnosis and management of climate-related illness, health education, science communication, evidence-based practice, research, collaboration and systems-thinking.

Affective knowledge: appreciation of: the intricate relationship between equity, sustainability and health; the importance of medical training to broader society; and the benefits of multidisciplinary collaboration.

This paper proposes learning objectives that integrate climate change and health literature, pedagogical theory, and the authors’ teaching and clinical practice experience (Table 1). In particular, the objectives incorporate perspectives from the Sustainable Health Education Network’s priority learning outcomes on sustainability and health, Australian Medical Council standards, and the Australia College of Rural and Remote Medicine curriculum competencies. The objectives engage conceptual and affective learning; involve higher-order cognitive skills such as analysis, synthesis and evaluation; and expect students to apply this knowledge to the clinical context.

How? Teaching and assessment

It is beyond the scope of this paper to specify details of teaching and assessment. These will change with institutional, climate and medical contexts. Moreover, curriculum design is an ongoing process; this is especially relevant in the dynamic field of climate change. However, key pedagogical considerations include constructive alignment, engagement, feedback, and assessment.

Climate change teaching could include lectures, placement projects, case based learning, reflective journals and clinical skills tutorials. Strategies to enhance engagement could include pre-learning, peer to peer teaching, panels and debates. To facilitate agency in learning,
students should receive formative and summative feedback that is timely; relevant; and involves the student, teacher and peers.

Although learning objectives are the focus of this paper, assessment shapes student priorities and learning. In a climate change curriculum, assessment should gauge higher order cognitive skills and conceptual, affective and skill-based knowledge as well as factual knowledge. To be transformative, a climate change curriculum needs to engage reflective learning processes that extend beyond the teaching context. However, to proceed to more reflective learning, and personal and professional development, students need to first be satisfied that the assessments are specific, relevant, and achievable. Sample assessment items are outlined in Table 2. Further teaching resources can be found online at the Sustainable Healthcare Education Network.

Where? Local implementation

It would be remiss to not acknowledge the potential barriers to integrating climate change into medical education. Challenges include: traditional bias towards biomedical reductionist paradigms; climate change denial; vested interests and politicisation of climate change; insufficient resources for curriculum development; lack of climate change and health expertise; absence of a local climate champion; and a contested and tightly scheduled curriculum. Yet these barriers are becoming less significant as climate change and health concerns become more pressing.

Climate change could be incorporated in tertiary, vocational or continuing professional medical education. A tertiary climate change medical curriculum has the greatest scope to reach entire cohorts and enable standardisation across institutions. Furthermore, universities have been identified as potential catalysts for innovation and progress on climate change and health. As a confluence of expertise, universities can facilitate interdisciplinary collaboration in teaching and research, which can provide graduates with diverse skills and perspectives necessary to address complex problems such as climate change.

The literature supports integrating climate change as core learning, both embedded in existing teaching, and introduced as stand-alone teaching. Embedding climate change in existing teaching – such as in a case-based tutorial on heatstroke – deepens and contextualises learning, strongly endorses climate change health concerns, and pro-

<table>
<thead>
<tr>
<th>Table 1. Sample learning objectives for climate change and health.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-health literacy</td>
</tr>
<tr>
<td>Clinical climate change preparedness</td>
</tr>
<tr>
<td>Sustainable health systems</td>
</tr>
<tr>
<td>Professionalism and public health literacy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Sample assessments for climate change and health.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group presentation</td>
</tr>
<tr>
<td>Essay or in-class debate</td>
</tr>
<tr>
<td>Reflective piece</td>
</tr>
<tr>
<td>Short answer questions</td>
</tr>
<tr>
<td>Placement project</td>
</tr>
</tbody>
</table>
motes permanence of the curriculum change. Conversely, stand-alone teaching enables students to conceptualise climate change and health in its entirety, and to adopt thinking styles that suit conceptual learning rather than factual-reductionist learning. Climate change and health can be taught from a variety of perspectives. A survey of UK medical schools found that climate change was taught mostly by public health specialists, but also by clinicians, ethicists, epidemiologists and climate scientists.9 Research indicates that teaching provided by a range of specialists conveys the relevance of climate change to all doctors.14

Further research

Further research could explore the relevance and transferability of this rationale and curriculum design to the education of other health professionals, and to different climate, socio-political and medical contexts. Gathering consensus among climate change and health experts on important learning objectives would complement existing research from the medical education perspective. Finally, reports of existing climate change medical curricula would assist with the practical aspects of curriculum design and implementation.

Conclusions

Climate change is a serious issue threatening the viability of the ecosystems and socio-economic fabric sustaining human health. This paper has illustrated a rationale for including a climate change curriculum in medical education: for climate change preparedness; to promote public health and eco-health literacy; and to deepen learning and strengthen graduate attributes. This paper has proposed learning objectives and explored methods for teaching and assessment. Medical schools are encouraged to become leaders in this field to catalyse and support a strong public health response to climate change in order to secure a safe and sustainable future.

References

29. McGain F, Blashki G, Moon K, Armstrong F. Mandating sustainabil-

34. Sustainable Development Unit. UN climate summit - cross system statement. 2014. Available from: http://www.sduhealth.org.uk/poli-

54. Walnter-Toews D, Wilcox BA, Aguirre AA, et al. EcoHealth: a trans-

59. Orlando R, Haytaian M. Physician leadership: a health-care sys-

61. Frenk J, Chen L, Bhutta ZA, et al. Health professionals for a new centu-

